85 research outputs found

    Centrally Banked Cryptocurrencies

    Get PDF
    Current cryptocurrencies, starting with Bitcoin, build a decentralized blockchain-based transaction ledger, maintained through proofs-of-work that also generate a monetary supply. Such decentralization has benefits, such as independence from national political control, but also significant limitations in terms of scalability and computational cost. We introduce RSCoin, a cryptocurrency framework in which central banks maintain complete control over the monetary supply, but rely on a distributed set of authorities, or mintettes, to prevent double-spending. While monetary policy is centralized, RSCoin still provides strong transparency and auditability guarantees. We demonstrate, both theoretically and experimentally, the benefits of a modest degree of centralization, such as the elimination of wasteful hashing and a scalable system for avoiding double-spending attacks.Comment: 15 pages, 4 figures, 2 tables in Proceedings of NDSS 201

    Contour: A Practical System for Binary Transparency

    Full text link
    Transparency is crucial in security-critical applications that rely on authoritative information, as it provides a robust mechanism for holding these authorities accountable for their actions. A number of solutions have emerged in recent years that provide transparency in the setting of certificate issuance, and Bitcoin provides an example of how to enforce transparency in a financial setting. In this work we shift to a new setting, the distribution of software package binaries, and present a system for so-called "binary transparency." Our solution, Contour, uses proactive methods for providing transparency, privacy, and availability, even in the face of persistent man-in-the-middle attacks. We also demonstrate, via benchmarks and a test deployment for the Debian software repository, that Contour is the only system for binary transparency that satisfies the efficiency and coordination requirements that would make it possible to deploy today.Comment: International Workshop on Cryptocurrencies and Blockchain Technology (CBT), 201

    Tracing Transactions Across Cryptocurrency Ledgers

    Get PDF
    One of the defining features of a cryptocurrency is that its ledger, containing all transactions that have evertaken place, is globally visible. As one consequenceof this degree of transparency, a long line of recent re-search has demonstrated that even in cryptocurrenciesthat are specifically designed to improve anonymity it is often possible to track money as it changes hands,and in some cases to de-anonymize users entirely. With the recent proliferation of alternative cryptocurrencies, however, it becomes relevant to ask not only whether ornot money can be traced as it moves within the ledgerof a single cryptocurrency, but if it can in fact be tracedas it moves across ledgers. This is especially pertinent given the rise in popularity of automated trading platforms such as ShapeShift, which make it effortless to carry out such cross-currency trades. In this paper, weuse data scraped from ShapeShift over a thirteen-monthperiod and the data from eight different blockchains to explore this question. Beyond developing new heuristics and creating new types of links across cryptocurrency ledgers, we also identify various patterns of cross-currency trades and of the general usage of these platforms, with the ultimate goal of understanding whetherthey serve a criminal or a profit-driven agenda.Comment: 14 pages, 13 tables, 6 figure

    Problematising transparency through LARP And deliberation

    Get PDF
    Information technology is increasingly designed to increase information transparency as a way to increase trust. However, it can be hard to comprehend and anticipate the social implications of information visibility, people's competing expectations of transparency versus privacy, and the role of enabling technologies. We devised Live Action Role Play (LARP) as a means for people to explore the potential and consequences of transparency, within a social context of daily transactions related to food, fashion, and finance. Through the process of deliberation, we enabled participants to critically assess their co-created LARP experience and articulate their transparency expectations for design considerations. We report on insights into their expectations and perceived limitations of information technology in delivering transparency, including social measures required to realise the full potential of technology, as well as transparency, while minimising unintended consequences

    An Empirical Analysis of Anonymity in Zcash

    Get PDF
    Among the now numerous alternative cryptocurrencies derived from Bitcoin, Zcash is often touted as the one with the strongest anonymity guarantees, due to its basis in well-regarded cryptographic research. In this paper, we examine the extent to which anonymity is achieved in the deployed version of Zcash. We investigate all facets of anonymity in Zcash's transactions, ranging from its transparent transactions to the interactions with and within its main privacy feature, a shielded pool that acts as the anonymity set for users wishing to spend coins privately. We conclude that while it is possible to use Zcash in a private way, it is also possible to shrink its anonymity set considerably by developing simple heuristics based on identifiable patterns of usage.Comment: 27th USENIX Security Symposium (USENIX Security '18), 15 pages, Zcas

    Deja Q: Using Dual Systems to Revisit q-Type Assumptions

    Get PDF
    After more than a decade of usage, bilinear groups have established their place in the cryptographic canon by enabling the construction of many advanced cryptographic primitives. Unfortunately, this explosion in functionality has been accompanied by an analogous growth in the complexity of the assumptions used to prove security. Many of these assumptions have been gathered under the umbrella of the uber-assumption, yet certain classes of these assumptions -- namely, q-type assumptions -- are stronger and require larger parameter sizes than their static counterparts. In this paper, we show that in certain groups, many classes of q-type assumptions are in fact implied by subgroup hiding (a well-established, static assumption). Our main tool in this endeavor is the dual-system technique, as introduced by Waters in 2009. As a case study, we first show that in composite-order groups, we can prove the security of the Dodis-Yampolskiy PRF based solely on subgroup hiding and allow for a domain of arbitrary size (the original proof only allowed a polynomially-sized domain). We then turn our attention to classes of q-type assumptions and show that they are implied -- when instantiated in appropriate groups -- solely by subgroup hiding. These classes are quite general and include assumptions such as q-SDH. Concretely, our result implies that every construction relying on such assumptions for security (e.g., Boneh-Boyen signatures) can, when instantiated in appropriate composite-order bilinear groups, be proved secure under subgroup hiding instead

    Deja Q All Over Again: Tighter and Broader Reductions of q-Type Assumptions

    Get PDF
    In this paper, we demonstrate that various cryptographic constructions--including ones for broadcast, attribute-based, and hierarchical identity-based encryption--can rely for security on only the static subgroup hiding assumption when instantiated in composite-order bilinear groups, as opposed to the dynamic q-type assumptions on which their security previously was based. This specific goal is accomplished by more generally extending the recent Deja Q framework (Chase and Meiklejohn, Eurocrypt 2014) in two main directions. First, by teasing out common properties of existing reductions, we expand the q-type assumptions that can be covered by the framework; i.e., we demonstrate broader classes of assumptions that can be reduced to subgroup hiding. Second, while the original framework applied only to asymmetric composite-order bilinear groups, we provide a reduction to subgroup hiding that works in symmetric (as well as asymmetric) composite-order groups. As a bonus, our new reduction achieves a tightness of log(q) rather than q
    corecore